Dilation invariant Banach limits

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Dilation Invariant Norms

Let δa be a nontrivial dilation. We show that every complete norm ‖ · ‖ on L1(RN ) that makes δa from (L1(RN ), ‖ · ‖) into itself continuous is equivalent to ‖ · ‖1. δa also determines the norm of both C0(R ) and Lp(RN ) with 1 < p < ∞ in a weaker sense. Furthermore, we show that even all the dilations do not determine the norm on L∞(RN ).

متن کامل

Generalizations of Banach-hausdorff Limits

In a recent paper [l],1 W. F. Eberlein introduced the notion of Banach-Hausdorff limits. We employ throughout m to denote the space of all real bounded sequences [2, pp. 11 and 34]. The BanachHausdorff limits are real-valued functionals L(x), defined over m, which are Banach limits [2, p. 34], i.e., which satisfy the four conditions (i) L(ax+by)=aL(x)+bL(y) (a, b real), (ii)L(l) = l, (iii) L(x)...

متن کامل

Nets of Extreme Banach Limits

Let N be the set of natural numbers and let a: N -* N be an injection having no periodic points. Let M0 be the set of o-invariant means on lx. When / G lx let da(f) = sup X(/), where the supremum is taken over all X G M„. It is shown that when/ e lx, there is a sequence (\)TM=2 of extreme points of M„ which has no extreme weak* limit points and such that \s(f) = dQ(f) for s = 2, 3, .... As a co...

متن کامل

A new metric invariant for Banach spaces

We show that if the Szlenk index of a Banach space X is larger than the first infinite ordinal ω or if the Szlenk index of its dual is larger than ω, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into X. We show that the converse is true when X is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that ...

متن کامل

Invariant Subspaces and Limits of Similarities

Let {Dn} be a sequence of bounded invertible operators on Hilbert space H. It is shown that the collection of operators T for which the norm-limit limDnTD n exists is an algebra. Furthermore, some sufficient conditions on this sequence are established for the corresponding algebra to have a nontrivial invariant subspace. By considering specific sequences of operators several invariant subspace ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2020

ISSN: 0019-3577

DOI: 10.1016/j.indag.2019.12.003